An experimental study of superconvergence phenomena in finite element magnetics
نویسندگان
چکیده
منابع مشابه
Superconvergence in Finite - Element Methods
My research focuses on applied aspects of the calculus of variations and partial differential equations, particularly nonlinear equations arising from physics and chemistry, and numerical analysis and scientific computing, particularly finite-element analysis and numerical methods for interface motion. I have worked on mathematical and numerical problems arising from materials science, such as ...
متن کاملSuperconvergence in the generalized finite element method
In this paper, we address the problem of the existence of superconvergence points of approximate solutions, obtained from the Generalized Finite Element Method (GFEM), of a Neumann elliptic boundary value problem. GFEM is a Galerkin method that uses non-polynomial shape functions, and was developed in [4, 5, 24]. In particular, we show that the superconvergence points for the gradient of the ap...
متن کاملSuperconvergence of new mixed finite element spaces
In this paper we prove some superconvergence of a new family of mixed finite element spaces of higher order we introduced in [ETNA, Vol.37, pp.189–201, 2010]. Among all the mixed finite element spaces having optimal order of convergence on quadrilateral grids, this space has the smallest unknowns. However, the scalar variable is only suboptimal in general; thus we have employed a post-processin...
متن کاملLagrange Interpolation and Finite Element Superconvergence
Abstract. We consider the finite element approximation of the Laplacian operator with the homogeneous Dirichlet boundary condition, and study the corresponding Lagrange interpolation in the context of finite element superconvergence. For ddimensional Qk-type elements with d ≥ 1 and k ≥ 1, we prove that the interpolation points must be the Lobatto points if the Lagrange interpolation and the fin...
متن کاملSuperconvergence of the gradient of finite element solutions
Super convergence of the gradient of approximate solutions to second order elhptic équations is analysed and justified for a large ciass of curved isoparametric quadrilatéral éléments Résumé — On analyse et on justifie la super convergence du gradient des solutions approchées obtenues lors de la résolution d'équations elliptiques du second ordre à Vaide d'éléments isoparamétriques courbes de ty...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Magnetics
سال: 1997
ISSN: 0018-9464
DOI: 10.1109/20.619688